Минобрнауки России

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «ВОРОНЕЖСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ» (ФГБОУ ВО «ВГУ»)

УТВЕРЖДАЮ

Заведующий кафедрой

Каменский Михаил Игоревич

Кафедра функционального анализа и операторных уравнений

20.03.2025г.

РАБОЧАЯ ПРОГРАММА УЧЕБНОЙ ДИСЦИПЛИНЫ

Б1.В.06 Формальные грамматики и теория компиляторов

1. Код и наименование направления подготовки/специальности:

10.05.04 Информационно-аналитические системы безопасности

2. Профиль подготовки/специализация:

Автоматизация информационно-аналитической деятельности

3. Квалификация (степень) выпускника:

Специалитет

4. Форма обучения:

Очная

5. Кафедра, отвечающая за реализацию дисциплины: Кафедра функционального анализа и операторных уравнений

6. Составители программы:

Копытин Алексей Вячеславович, доцент кафедры функционального анализа и операторных уравнений

7. Рекомендована:

НМС математического факультета, протокол № 0500-03 от 18.03.2025г.

8. Учебный год:

2027-2028

9. Цели и задачи учебной дисциплины:

Цели изучения дисциплины:

- ознакомление с основными понятиями и методами использования теории формальных грамматик, освоение принципов построения формальных языков программирования, работы компиляторов, разработка алгоритма с использованием грамматических структур формальных грамматик.

Задачи учебной дисциплины:

- Изучение базовых понятий и принципов построения формальных грамматик и компиляторов, работы формальных грамматик и компиляторов, а также области их применения.

10. Место учебной дисциплины в структуре ООП:

дисциплина Формальные грамматики и теория компиляторов относится к части, формируемой участниками образовательных отношений, блока Б1.

11. Планируемые результаты обучения по дисциплине/модулю (знания, умения, навыки), соотнесенные с планируемыми результатами освоения образовательной программы (компетенциями выпускников) и индикаторами их достижения:

Код и название компетенции	Код и	Знания, умения, навыки
	название индикатора компетенции	
ПК-2 Способен организовывать работы по выполнению в информационно-аналитических системах требований защиты информации ограниченного доступа	ПК-2.1 Способен анализировать безопасность информации с помощью формальных моделей	Знать: способы анализа безопасности информации с помощью формальных моделей. Уметь: анализировать безопасность информации с помощью формальных моделей. Владеть: способами анализа безопасности информации с помощью формальных моделей.

12. Объем дисциплины в зачетных единицах/час: 3/108

Форма промежуточной аттестации:

Зачет

13. Трудоемкость по видам учебной работы

тэ. Грудоемкость по видам учеоной расоты			
Вид учебной работы	Семестр 5	Семестр 6	Всего
Аудиторные занятия	0	48	48
Лекционные занятия		16	16
Практические занятия		32	32
Лабораторные занятия			0
Самостоятельная работа	0	60	60
Курсовая работа			0
Промежуточная аттестация	0	0	0
Часы на контроль			0
Всего	0	108	108

13.1.Содержание дисциплины

п/п	Наименование раздела дисциплины	Содержание раздела дисциплины	Реализация раздела дисциплины с помощью онлайнкурса, ЭУМК
1	Лекции		

п/п	Наименование раздела дисциплины	Содержание раздела дисциплины	Реализация раздела дисциплины с помощью онлайнкурса, ЭУМК
1.1	Реализация лексических и синтаксических анализаторов, применение грамматик для описания синтаксиса формальных языков (неформальное введение в грамматики)	Использование аппарата грамматик для реализации рекурсивных нисходящих синтаксических анализаторов. Демонстрация использования грамматик для проектирования и реализации модуля вычисления математических выражений, принципы формального перевода правил грамматики в код методов на языке программирования. Доработка модуля до простейшего интерпретируемого языка с помощью модификации грамматики и последующей модификации модуля в соответствии с изменениями в грамматике.	https://edu.vsu.ru/course/ view.php?id=29819
1.2	Базовая структура транслятора	Структуры данных в трансляторе: ASTдеревья, таблицы идентификаторов, промежуточные представления транслируемой программы. Базовые модули интерпретатора/компилятора. Указания студентам для выполнения практических заданий.	https://edu.vsu.ru/course/ view.php?id=29819

1.3	Инструменты для автоматизации построения анализаторов, введение в Antir	Доработка модуля до полноценного интерпретируемого языка, демонстрация сложностей, которые возникают при разработки синтаксического анализатора без использования соответствующих инструментов. Обзор инструментов для построения синтаксических анализаторов (Flex/Bizon, JavaCC, Antlr). Введение в Antlr: возможности, составные части, принцип работы. Грамматики Antlr: лексические и синтаксические правила, управление построением AST-деревьев. Разбор грамматики для реализованного ранее языка.	https://edu.vsu.ru/course/view.php?id=29819
1.4	Основы генерации кода	Формальное сопоставление конструкций ASTдерева инструкциям целевой платформы на примере простейшего вычислителя. Разбор примеров. Структура модуля генерации кода.	https://edu.vsu.ru/course/ view.php?id=29819
п/п	Наименование	Содержание раздела дисциплины	
	раздела дисциплины		
			Реализация раздела дисциплины с помощью онлайнкурса, ЭУМК
1.5	Генерация байткода .NET Framework	Краткий обзор языка MSIL и архитектуры виртуальной машины .NET Framework. Принципы трансляции в MSIL (выделение памяти и т.п.) Генерация кода MSIL для основных типов узлов ASTдерева (арифметические операции, вызов функций, условные операторы, циклы). Разбор примеров.	https://edu.vsu.ru/course/ view.php?id=29819
1.6	Генерация байткода Java	Краткий обзор Java байт-кода и архитектуры виртуальной машины Java. Принципы трансляции в Java байт-код (выделение памяти и т.п.) Генерация байт-кода для основных типов узлов AST-дерева (арифметические операции, вызов функций, условные операторы, циклы). Разбор примеров.	https://edu.vsu.ru/course/ view.php?id=29819
		1 1 1 1 2	

2	Генерация кода для платформы x86	Краткий обзор архитектуры х86. Принципы генерации исполняемого кода под х86: возникающие сложности и варианты их преодоления. Генерация кода для основных типов узлов AST-дерева (арифметические операции, вызов функций, условные операторы, циклы). Разбор примеров.	https://edu.vsu.ru/course/ view.php?id=29819
	Практические занятия		
2.1	Реализация лексических и синтаксических анализаторов, применение грамматик для описания синтаксиса формальных языков (неформальное введение в грамматики)	Использование аппарата грамматик для реализации рекурсивных нисходящих синтаксических анализаторов. Демонстрация использования грамматик для проектирования и реализации модуля вычисления математических выражений, принципы формального перевода правил грамматики в код методов на языке программирования. Доработка модуля до простейшего интерпретируемого языка с помощью модификации грамматики и последующей модификации модуля в соответствии с изменениями в грамматике.	https://edu.vsu.ru/course/ view.php?id=29819
2.2	Базовая структура транслятора	Структуры данных в трансляторе: ASTдеревья, таблицы идентификаторов, промежуточные представления транслируемой программы. Базовые модули интерпретатора/компилятора. Указания студентам для выполнения практических заданий.	https://edu.vsu.ru/course/ view.php?id=29819

п/п	Наименование раздела дисциплины	Содержание раздела дисциплины	
			Реализация раздела дисциплины с помощью онлайнкурса, ЭУМК

2.3	Инструменты для автоматизации построения анализаторов, введение в Antlr	Доработка модуля до полноценного интерпретируемого языка, демонстрация сложностей, которые возникают при разработки синтаксического анализатора без использования соответствующих инструментов. Обзор инструментов для построения синтаксических анализаторов (Flex/Bizon, JavaCC, Antlr). Введение в Antlr: возможности, составные части, принцип работы. Грамматики Antlr: лексические и синтаксические правила, управление построением AST-деревьев. Разбор грамматики для реализованного ранее языка.	https://edu.vsu.ru/course/view.php?id=29819
2.4	Основы генерации кода	Формальное сопоставление конструкций ASTдерева инструкциям целевой платформы на примере простейшего вычислителя. Разбор примеров. Структура модуля генерации кода.	https://edu.vsu.ru/course/ view.php?id=29819
2.5	Генерация байткода .NET Framework	Краткий обзор языка MSIL и архитектуры виртуальной машины .NET Framework. Принципы трансляции в MSIL (выделение памяти и т.п.) Генерация кода MSIL для основных типов узлов ASTдерева (арифметические операции, вызов функций, условные операторы, циклы). Разбор примеров.	https://edu.vsu.ru/course/ view.php?id=29819
2.6	Генерация байткода Java	Краткий обзор Java байт-кода и архитектуры виртуальной машины Java. Принципы трансляции в Java байт-код (выделение памяти и т.п.) Генерация байт-кода для основных типов узлов AST-дерева (арифметические операции, вызов функций, условные операторы, циклы). Разбор примеров.	https://edu.vsu.ru/course/ view.php?id=29819
2.7	Генерация кода для платформы x86	Краткий обзор архитектуры х86. Принципы генерации исполняемого кода под х86: возникающие сложности и варианты их преодоления. Генерация кода для основных типов узлов AST-дерева (арифметические операции, вызов функций, условные операторы, циклы). Разбор примеров.	https://edu.vsu.ru/course/ view.php?id=29819

3			
	Лабораторные работы		
п/п	Наименование раздела дисциплины	Содержание раздела дисциплины	Реализация раздела дисциплины с помощью онлайнкурса,
3.1	нет		ЭУМК

13.2.Темы (разделы) дисциплины и виды занятий

№ п/	Наименование темы (раздела)	Лекционны е занятия	Практическ ие занятия	Лабораторн ые занятия	Самостоятельн ая работа	Всего
1	Обзор				3	3
	предметной области					

2	Фазы трансляции программ			3	3
3	Реализация лексических и синтаксических анализаторов, применение грамматик для описания синтаксиса формальных языков (неформальное введение в грамматики)	3	5	6	14

4		1	4		4	9
	Базовая структура транслятора					
5	Инструменты для автоматизации построения анализаторов, введение в Antlr	5	7		8	20
6	Элементы теории языков (математическ ий подход)				3	3
№ ⊓/	Наименование темы (раздела)	Лекционны е занятия	Практическ ие занятия	Лабораторн ые занятия	Самостоятельн ая работа	Всего
7	LL(k)- грамматики				4	4
8	LR(k)грамматики				4	4
9	Основы генерации кода	1	2		3	6
10	Генерация байткода .NET Framework	2	4		6	12
11	Генерация байткода Java	2	5		6	13

12		2	5		6	13
	Генерация кода для платформы x86					
13					4	4
	Основы оптимизации кода при компиляции (обзорно)					
		16	32	0	60	108

14. Методические указания для обучающихся по освоению дисциплины

Рекомендуется работа с конспектами лекций, презентационным материалом, выполнение всех лабораторных и контрольных работ.

15. Перечень основной и дополнительной литературы, ресурсов интернет, необходимыхдля освоения дисциплины

песскодиныхдии сереснии дисциины				
№ п/п	Источник			
1	Ахо А. Компиляторы: принципы, технологии и инструменты / А.Ахо, Р. Сети, Дж. Ульман : Пер. с англ. – М и др:Вильямс, 2008. – 767 с.			
2	Соломатин Д.И. Основы синтаксического разбора, построение синтаксических анализаторов - Учебно-методическое пособие для вузов / Д.И.Соломатин, А.В. Копытин, А.И. Другалев - ВГУ, 2014 - 57 с.			

б) дополнительная литература:

№ п/п	Источник
1	Грис. Конструирование компиляторов/ Грис М. : Мир,1980.
№ п/п	Источник
2	Льюис Ф. Теоретические основы проектирования компиляторов/ Ф. Льюис, Д. Розенкранц, Р. Стирнз М.: Мир, 1987.
3	Хантер Р. Проектирование и конструирование компиляторов / Р. Хантер М.:Мир, 1989.

4 Ахо А. Теория синтаксического анализа, перевода и компиляции/ А. Ахо, Дж.Ульман. – М.: Мир, 1978.

в) информационные электронно-образовательные ресурсы:

Источник
Вирт Н. Построение компиляторов [Электронный ресурс] : . — Электрон. дан. — М. : ДМК Пресс, 2010. — 186 с. — Режим доступа: http://e.lanbook.com/books/element.php?pl1_id=1262
Залогова, Л.А. Разработка Паскаль-компилятора [Электронный ресурс] : . — Электрон. дан. — М. : "Лаборатория знаний" (ранее "БИНОМ. Лаборатория знаний"), 2014. — 185 с. — Режим доступа: http://e.lanbook.com/books/element.php?pl1 id=66125

16. Перечень учебно-методического обеспечения для самостоятельной работы

№ п/п	Источник
1	Ахо А. Компиляторы: принципы, технологии и инструменты / А.Ахо, Р. Сети, Дж. Ульман : Пер. с англ М и др:Вильямс, 2008 767 с.
2	Соломатин Д.И. Основы синтаксического разбора, построение синтаксических анализаторов - Учебно-методическое пособие для вузов / Д.И.Соломатин, А.В. Копытин, А.И. Другалев - ВГУ, 2014 - 57 с.

17. Образовательные технологии, используемые при реализации учебной дисциплины, включая дистанционные образовательные технологии (ДОТ), электронное обучение (ЭО), смешанное обучение):

OpenJDK - беплатен

Среда разработки NetBeans или Intellij IDEA (академическая лицензия или версия Community) бесплатны

Python версии 3.5 или выше с установленными дополнительными библиотеками (возможен вариант в виде дистрибутива Anaconda) - бесплатен

Среда разработки PyCharm (академическая лицензия или версия Community) - бесплатна

18. Материально-техническое обеспечение дисциплины:

Специализированная мебель, маркерная доска, персональные компьютеры.

19. Оценочные средства для проведения текущей и промежуточной аттестаций

Порядок оценки освоения обучающимися учебного материала определяется содержанием следующих разделов дисциплины:

№	Разделы дисциплины	Код	Код	Оценочные средства
п/п	(модули)	компетенции	индикатора	для текущей
1	1. Реализация лексических и синтаксических анализаторов, применение грамматик для описания синтаксиса формальных языков (неформальное введение в грамматики) 2. Базовая структура транслятора 3. Инструменты для автоматизации построения анализаторов, введение в Antlr 4. Основы генерации кода 5. Генерация байт-кода .NET Framework 6. Генерация байт-кода Java 7. Генерация кода для платформы х86	ПК-2	ПК-2.1	практическое задание из пункта 20.1 (контроль и оценка этапов выполнения)

Промежуточная аттестация

Форма контроля - Зачет

Оценочные средства для промежуточной аттестации

Для оценивания результатов обучения на зачете используются следующие содержательные показатели (формулируется с учетом конкретных требований дисциплины):

- 1) знание теоретических основ учебного материала, основных определений, понятий ииспользуемой терминологии;
- 2) умение проводить обоснование и представление основных теоретических и практических результатов (теорем, алгоритмов, методик) с использованием математических выкладок, блок-схем, структурных схем и стандартных описаний к ним;
- 3) умение связывать теорию с практикой, иллюстрировать ответ примерами, в том числе, собственными, умение выявлять и анализировать основные закономерности, полученные, в том числе, в ходе выполнения лабораторно-практических заданий;
- 4) умение обосновывать свои суждения и профессиональную позицию по излагаемому вопросу;
- 5) владение навыками программирования и экспериментирования в рамках выполняемых лабораторных заданий;

Различные комбинации перечисленных показателей определяют критерии оценивания результатов обучения (сформированности компетенций) на зачете:

- высокий (углубленный) уровень сформированности компетенций;
- повышенный (продвинутый) уровень сформированности компетенций; пороговый (базовый) уровень сформированности компетенций.

20 Типовые оценочные средства и методические материалы, определяющие процедурыоценивания

20.1 Текущий контроль успеваемости

Контроль успеваемости по дисциплине осуществляется с помощью контроля выполнения обязательных практических заданий. Перечень заданий:

1. Реализация учебного компилятора для подмножества языка С в MSIL байт-код (по этапам:

синтаксический анализ, семантичский анализ, кодогенерация)

- 2. Реализация учебного компилятора для подмножества языка С в Java байт-код (по этапам: синтаксический анализ, семантичский анализ, кодогенерация)
- 3. Реализация учебного компилятора для подмножества языка С в промежуточный код IR LLVM (поэтапам: синтаксический анализ, семантичский анализ, кодогенерация)
- 4. Реализация учебного компилятора для подмножества языка Pascal в MSIL байт-код (по этапам:

синтаксический анализ, семантичский анализ, кодогенерация)

- 5. Реализация учебного компилятора для подмножества языка Pascal в Java байт-код (по этапам: синтаксический анализ, семантичский анализ, кодогенерация)
- 6. Реализация учебного компилятора для подмножества языка Pascal в промежуточный код IR LLVM

(по этапам: синтаксический анализ, семантичский анализ, кодогенерация)

7. Реализация учебного компилятора для подмножества языка Go в MSIL байт-код (по этапам:

синтаксический анализ, семантичский анализ, кодогенерация)

8. Реализация учебного компилятора для подмножества языка Go в Java байт-код (по этапам:

синтаксический анализ, семантичский анализ, кодогенерация)

- 9. Реализация учебного компилятора для подмножества языка Go в промежуточный код IR LLVM (поэтапам: синтаксический анализ, семантичский анализ, кодогенерация)
- 10. Реализация учебного компилятора для подмножества языка Swift в MSIL байт-код (по этапам:

синтаксический анализ, семантичский анализ, кодогенерация)

- 11. Реализация учебного компилятора для подмножества языка Swift в Java байт-код (по этапам: синтаксический анализ, семантичский анализ, кодогенерация)
- 12. Реализация учебного компилятора для подмножества языка Swift в промежуточный код IR LLVM

(по этапам: синтаксический анализ, семантичский анализ, кодогенерация)

- 13. Реализация транслятора подмножества языка Python в JavaScript
- 14. Реализация прототипа высокоуовней виртуальной машины для JavaScript и компилятора JavaScript под эту машину
- 15. Реализация транслятора подмножества JavaScript в Python
- 16. Прототип модуля исполнения SQL-запросов

20.2 Промежуточная аттестация

Перечень вопросов к зачету:

1. Общее устройство компиляторов, фазы компиляции (обзорно).

- 2. Методики создания компиляторов: раскрутка, кросс-компиляция, использование виртуальныхмашин.
- 3. Понятие объектного модуля, сборка исполняемых файлов (линковка).
- 4. Лексический анализ, реализация лексического анализатора.
- 5. Синтаксический анализ, применение грамматик реализация синтаксическо анализатора. Дереворазбора и AST-дерево.
- 6. Внутреннее представление разбираемых программ. Понятие входной строки, токенов, ASTдерева, таблиц идентификаторов.
- 7. Семантический и видозависимый анализ, вычисление типов выражений. Реализациясемантического анализатора.
- 8. Разбор математичеких выражений (в качестве практического примера).
- 9. Разбор XML (в качестве практического примера).
- 10. Разбор JSON (в качестве практического примера).
- 11. Генераторы синтаксисечких анализаторов (обзорно).
- 12. Применение ANTLR для построения анализаторов, структура грамматики ANTLR, структуратранслятора с использованием ANTLR.
- 13. Возможности ANTLR для построения AST-деревьев.
- 14. Формальные языки, классификация языков.
- 15. Математическое определение порождающей грамматики, типы грамматик, примеры грамматик.
- 16. Понятие выводимости, формальное определение языка.
- 17. Разбор цепочек, дерево вывода, понятие неоднозначности грамматик и языков.
- 18. LL(k)-грамматики. Множества FIRST и FOLLOW, алгоритм построение для k=1.
- 19. Алгоритм построения управляющей таблицы для LL(1)-разбора. Алгоритм разбора строки спомощью управляющей таблицы.
- 20. LR(k)-грамматики. Алгоритм построения таблицы Action и Goto. Алгоритм разбора Shift/Reduce.21. Формальное сопоставление конструкций AST-дерева инструкциям целевой платформы на примере простейшего вычислителя. Структура модуля генерации кода.
- 22. Генерация кода для стековой и регистровой машины, сравнение.
- 23. Краткий обзор языка MSIL и архитектуры виртуальной машины .NET Framework.
- 24. Генерация кода MSIL для основных типов узлов AST-дерева.
- 25. Краткий обзор Java байт-кода и архитектуры виртуальной машины Java.
- 26. Генерация Java байт-кода для основных типов узлов AST-дерева.
- 27. Принципы генерация кода для регистровых архитектур. Двухадресный и трехадресный код.
- 28. Генерация кода для х86.
- 29.Сложности трансляции кода блочных языков (с произвольной вложенностью блоков процедур/функций), используемые решения.
- 30. Оптимизация кода в процессе компиляции (обзорно).

20.3 Фонд оценочных средств сформированности компетенций студентов, рекомендуемый для проведения диагностических работ

- 1) закрытые задания (тестовые, средний уровень сложности):
- 1) Объединение линейных языков
- (1) является линейным языком
- (2) не является линейным языком
- (3) не имеет смысла, как действие

- 2) Автоматы с магазинной памятью соответствуют
- (1) контекстно-свободным грамматикам
- (2) праволинейным грамматикам
- (3) как контекстно-свободным, так и праволинейным грамматикам
- 3) Используемые в приложениях формальные языки
- (1) являются конечными
- (2) являются бесконечными
- (3) как правило, не определяются понятием конечности
- 4) Контекстно-свободным грамматикам соответствуют
- (1) конечные автоматы
- (2) автоматы с магазинной памятью
- (3) бесконечные детерминированные автоматы
- 5)Процесс нахождения дерева вывода слова в заданной контекстно-свободной грамматике называется
- (1) синтаксическим анализом
- (2) синтаксической интерполяцией
- (3) синтаксическим разбором
- 2) открытые задания (тестовые, повышенный уровень сложности):
- 1) Вставьте два слова. К наиболее распространенным способам конечного задания формального языка относят ... и ...

Ответ: грамматики, автоматы

2) Вставьте слово. Объединение линейных языков является ... языком

Ответ: линейным

3) Вставьте слово. Используемые в приложениях формальные языки являются

Ответ: бесконечными

4) Вставьте два слова. Контекстно-свободным грамматикам соответствуют автоматы с ...

Ответ: магазинной памятью

5) Вставьте слово. Если соответствующее отношение взаимозаменяемости разбивает множество всех слов рассматриваемого алфавита на конечное число классов эквивалентности, то язык является ...

Ответ: автоматным

Критерии и шкалы оценивания заданий ФОС:

1) Задания закрытого типа (выбор одного варианта ответа, верно/неверно):

- 1 балл указан верный ответ;
- 0 баллов указан неверный ответ.

2) Задания закрытого типа (множественный выбор):

- 2 балла указаны все верные ответы;
- 0 баллов указан хотя бы один неверный ответ.

3) Задания закрытого типа (на соответствие):

- 2 балла все соответствия определены верно;
- 0 баллов хотя бы одно сопоставление определено неверно.

4) Задания открытого типа (короткий текст):

- 2 балла указан верный ответ;
- 0 баллов указан неверный ответ.

5) Задания открытого типа (число):

• 2 балла – указан верный ответ;

0 баллов – указан неверный ответ.

Задания раздела 20.3 рекомендуются к использованию при проведении диагностических работ с целью оценки остаточных результатов освоения данной дисциплины (знаний, умений, навыков).